

Project: Severe Environment Test Report	Tracking Code: CR-1170103_Report_Rev_1
Requested by: Chris Wade	Date: 11/11/2025
Part #: ASP-232112-06/ASP-232112-06	
Part description: ASP-232112-06	Tech: Tony Wagoner
Test Start: 2/15/2025	Test Completed: 7/15/2025

SEVERE ENVIRONMENT TEST REPORT

ASP-232112-06
ASP-232112-06/ ASP-232112-06

REVISION HISTORY

DATA	REV.NUM.	DESCRIPTION	ENG
10/13/2025	1	Initial Issue	PC

CERTIFICATION

All instruments and measuring equipment were calibrated to National Institute for Standards and Technology (NIST) traceable standards according to ISO 10012-1 and ANSI/NCSL 2540-1, as applicable.

All contents contained herein are the property of Samtec. No portion of this report, in part or in full shall be reproduced without prior written approval of Samtec.

SCOPE

To perform the following tests: Severe Environment test. Please see test plan.

APPLICABLE DOCUMENTS

Standards: EIA Publication 364; VITA 47.1

TEST SAMPLES AND PREPARATION

- 1) All materials were manufactured in accordance with the applicable product specification.
- 2) All test samples were identified and encoded to maintain traceability throughout the test sequences.
- 3) After soldering, the parts to be used for LLCR testing were cleaned according to TLWI-0001.
- 4) Either an automated cleaning procedure or an ultrasonic cleaning procedure may be used.
- 5) The automated procedure is used with aqueous compatible soldering materials.
- 6) Parts not intended for testing LLCR are visually inspected and cleaned if necessary.
- 7) Any additional preparation will be noted in the individual test sequences.
- 8) Solder Information: Lead Free
- 9) Samtec Test PCBs used: PCB-114049-TST/PCB-114052-TST/ PCB-114054-TST-XX.

FLOWCHARTS

Mating/Unmating/Durability

Note: With Humidity (Up to 100% RH, 240 hours, 25°C to 65°C)

Note: From MIL-STD-810G: For chamber control purposes, 100% RH implies as close to 100% RH as possible, but not less than 95%.

Group 1

ASP-232112-06

ASP-232112-06

8 Assemblies

9 Positions

Step Description

1. LLCR ⁽²⁾
2. Mating/Unmating Force ⁽³⁾
3. Cycles
Quantity = 250 Cycles
4. LLCR ⁽²⁾
Max Delta = 15 mOhm
5. Thermal Shock ⁽⁴⁾
6. LLCR ⁽²⁾
Max Delta = 15 mOhm
7. Humidity ⁽¹⁾ - Non Standard
8. LLCR ⁽²⁾
Max Delta = 15 mOhm
9. Mating/Unmating Force ⁽³⁾

(1) Humidity = Other
240 Hours
+25°C to +65°C @ 95% RH up to 100% RH

(2) LLCR = EIA-364-23
Open Circuit Voltage = 20 mV Max
Test Current = 100 mA Max

(3) Mating/Unmating Force = EIA-364-13

(4) Thermal Shock = EIA-364-32
Exposure Time at Temperature Extremes = 1/2 Hour
Method A, Test Condition = I (-55°C to +85°C)
Test Duration = A-3 (100 Cycles)

(1) Humidity = Other
240 Hours
+25°C to +65°C @ 95% RH up to 100% RH

(2) LLCR = EIA-364-23
Open Circuit Voltage = 20 mV Max
Test Current = 100 mA Max

(3) Mating/Unmating Force = EIA-364-13

(4) Thermal Shock = EIA-364-32
Exposure Time at Temperature Extremes = 1/2 Hour
Method A, Test Condition = I (-55°C to +85°C)
Test Duration = A-3 (100 Cycles)

FLOWCHARTS Continued

Mechanical Shock/Random Vibration/LLCR

Group 1

ASP-232112-06

ASP-232112-06

8 Assemblies

VITA 47.1 (V To V)

Step **Description**

1. **LLCR** ⁽¹⁾
2. **Mechanical Shock** ⁽²⁾ - Non Standard
3. **Random Vibration** ⁽³⁾ - Non Standard

Note: Conditions:

 - 1) 5 Hz to 100 Hz, PSD increasing at 3dB/octave
 - 2) 100 Hz to 1000 Hz 0.10 g^2/Hz
 - 3) 1000 Hz to 2000 Hz PSD decreasing at 3dB/octave
4. **LLCR** ⁽¹⁾
Max Delta = 15 mOhm

(1) LLCR = EIA-364-23
 Open Circuit Voltage = 20 mV Max
 Test Current = 100 mA Max

(2) Mechanical Shock = Other
 40G, 11 milliseconds, Half Sine
 Number of Shocks = 3 Per Direction, Per Axis, 18 Total
 Operating Shock Class OS2

(3) Random Vibration = Other
 12 G 'RMS', 5Hz to 2000Hz, 1 Hours/Axis
 Vibration Class V3 VITA 47.1

Mechanical Shock/Random Vibration/Event Detection

Group 1

ASP-232112-06

ASP-232112-06

8 Assemblies

VITA 47.1 (V To V)

Step **Description**

1. Nanosecond Event Detection
(Mechanical Shock) ⁽¹⁾ - Non Standard
2. Nanosecond Event Detection
(Random Vibration) ⁽²⁾ - Non Standard

Note: Conditions:

 - 1) 5 Hz to 100 Hz, PSD increasing at 3dB/octave
 - 2) 100 Hz to 1000 Hz 0.10 g^2/Hz
 - 3) 1000 Hz to 2000 Hz PSD decreasing at 3dB/octave

(1) Nanosecond Event Detection (Mechanical Shock) = Other
 Use EIA-364-87 for Nanosecond Event Detection:
 Test Condition = F (50 nanoseconds at 10 ohms)
 40G, 11 milliseconds, Half Sine

(2) Nanosecond Event Detection (Random Vibration) = Other
 Use EIA-364-87 for Nanosecond Event Detection:
 Test Condition = F (50 nanoseconds at 10 ohms)
 Random Vibration: 12 G 'RMS', 5Hz to 2000Hz, 1 Hours/Axis, Vibration Class V3 VITA 47.1

FLOWCHARTS Continued**Temperature Cycling**Group 1

ASP-232112-06

ASP-232112-06

8 Assemblies

500 Thermal Cycles

Note: Reference MIL-STD-202G, Method 107, Thermal Shock

Step Description

1. Continuity (Initial)
2. Temperature Cycles⁽¹⁾ - Non Standard
Continuity = Monitor for 1 MicroSecond
Interruptions Throughou
Cycles = 500 Cycles
3. Continuity (Following Last
Cycle)

(1) Temperature Cycles = Other

Max Temperature = 125° C

Min Temperature = -65° C

Dwell Time = 30 minutes at each extreme

Ramp Rate = 10° C/min

VITA 47.1

Non-Operating Class Temperature**VITA 47.1**Group 1

ASP-232112-06

ASP-232112-06

8 Assemblies

Non-Operating Class Temperature**Step Description**

1. LLCR⁽¹⁾
Max Delta = 15 mOhm
2. Temperature Cycle
Cycles = 100
Temperature Cycle = -55°C to 105°C
3. LLCR⁽¹⁾
Max Delta = 15 mOhm
4. Temperature Cycle
Temperature Cycles = -65°C to 125°C
Cycles = 100
5. LLCR⁽¹⁾
Max Delta = 15 mOhm

(1) LLCR = EIA-364-23

Open Circuit Voltage = 20 mV Max

Test Current = 100 mA Max

FLOWCHARTS Continued

DWV @ Altitude

Pin to Pin

Group 1

ASP-232112-06

ASP-232112-06

3 Assemblies

Custom Group

Step Description

1. DWV at Test Voltage₍₁₎ - Non Standard

Note: Test Voltage to be 300 VAC

Row to Row

Group 2

ASP-232112-06

ASP-232112-06

3 Assemblies

Custom Group

Step Description

1. DWV at Test Voltage₍₂₎ - Non Standard

Note: Test Voltage to be 300 VAC

(1) DWV at Test Voltage = Other

Test Condition IV= 70,000 ft

DWV test voltage is equal to 75% of the lowest breakdown voltage

Test voltage applied for 60 seconds

(2) DWV at Test Voltage = Other

Test Condition IV= 70,000 ft

DWV test voltage is equal to 75% of the lowest breakdown voltage

Test voltage applied for 60 seconds

Electrostatic Discharge (ESD)

Group 1

ASP-232112-06

ASP-232112-06

8 Assemblies

EN61000-4-2

Step Description

1. Exposure To 5kV, 10kV, 15kV,
Repeat 10 Times

*Note: The connector shall not be
susceptable to damage by ESD
events from 0 to 15kV as
discharged from a 150 pF capacitor
through a 330 ohm resistor.*

ATTRIBUTE DEFINITIONS

The following is a brief, simplified description of attributes.

THERMAL SHOCK:

- 1) OTHER, *Thermal Shock (Temperature Cycling) Test Procedure for Electrical Connectors.*
- 2) Test Condition: -65°C to +125°C
- 3) Test Time: ½ hour dwell at each temperature extreme
- 4) Test Duration: 100 Cycles
- 5) All test samples are pre-conditioned at ambient.
- 6) All test samples are exposed to environmental stressing in the mated condition.

THERMAL SHOCK (NON-OPERATING CLASS TEMPERATURE):

- 7) OTHER, *Thermal Shock (Temperature Cycling) Test Procedure for Electrical Connectors.*
- 8) Test Condition: -55°C to +105°C and -65°C to +125°C
- 9) Test Time: ½ hour dwell at each temperature extreme
- 10) Test Duration: 100 Cycles
- 11) All test samples are pre-conditioned at ambient.
- 12) All test samples are exposed to environmental stressing in the mated condition.

THERMAL SHOCK:

- 1) EIA-364-32, *Thermal Shock (Temperature Cycling) Test Procedure for Electrical Connectors.*
- 2) Test Condition I: -55°C to +85°C
- 3) Test Time: ½ hour dwell at each temperature extreme
- 4) Test Duration: A-3 100 Cycles
- 5) All test samples are pre-conditioned at ambient.
- 6) All test samples are exposed to environmental stressing in the mated condition.

HUMIDITY:

- 1) Reference document: Other, *Humidity Test Procedure for Electrical Connectors.*
- 2) Test Condition, 240 Hours.
- 3) Method, +25° C to + 65° C, 95% to 100% Relative Humidity excluding sub-cycles 7a.
- 4) All samples are pre-conditioned at ambient.
- 5) All test samples are exposed to environmental stressing in the mated condition.

MATING/UNMATING:

- 1) Reference document: EIA-364-13, *Mating and Unmating Forces Test Procedure for Electrical Connectors.*
- 2) The full insertion position was to within 0.003" to 0.004" of the plug bottoming out in the receptacle to prevent damage to the system under test.
- 3) One of the mating parts is secured to a floating X-Y table to prevent damage during cycling.

MECHANICAL SHOCK (Specified Pulse):

- 1) Reference document: other, *Mechanical Shock Test Procedure for Electrical Connectors*
- 2) Test Condition: OS2
- 3) Peak Value: 40 G
- 4) Duration: 11 Milliseconds
- 5) Wave Form: Half Sine
- 6) Number of Shocks: 3 Shocks / Direction, 3 Axis (18 Total)

VIBRATION:

- 1) Reference document: other, *Vibration Test Procedure for Electrical Connectors*
- 2) Test Condition: V3 vita 47.1
- 3) Power Spectral Density: 0.04 G² / Hz
- 4) G 'RMS': 12
- 5) Frequency: 5 to 2000 Hz
- 6) Duration: 1 Hours per axis (3 axis total)

ATTRIBUTE DEFINITIONS Continued

The following is a brief, simplified description of attributes

NANOSECOND-EVENT DETECTION:

- 1) Reference document: EIA-364-87, *Nanosecond-Event Detection for Electrical Connectors*
- 2) Prior to test, the samples were characterized to assure the low nanosecond event being monitored will trigger the detector.
- 3) After characterization it was determined the test samples could be monitored for 50 nanosecond events

LLCR:

- 1) EIA-364-23, *Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets*.
- 2) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 3) The following guidelines are used to categorize the changes in LLCR as a result from stressing
 - a. $\leq +5.0$ mOhms: ----- Stable
 - b. $+5.1$ to $+10$ mOhms: ----- Minor
 - c. $+10$ to $+15.0$ mOhms: ----- Acceptable
 - d. $+15.1$ to $+50.0$ mOhms: ----- Marginal
 - e. $+50.1$ to $+1000$ mOhms: ----- Unstable
 - f. $>+1000$ mOhms: ----- Open Failure

DIELECTRIC WITHSTANDING VOLTAGE (DWV):

To determine if the sockets can operate at its rated voltage and withstand momentary over potentials due to switching, surges, and similar phenomenon. Separate samples are used to evaluate the effect of environmental stresses so not to influence the readings from arcing that occurs during the measurement process.

- 1) PROCEDURE:
 - a. Reference document: other, *Withstanding Voltage Test Procedure for Electrical Connectors*.
 - b. Test Conditions IV=70000 ft
 - c. Test voltage applied for 60 seconds.

ELECTROSTATIC DISCHARGE:

- 1) Reference Document: EN61000-4-2, VITA 47
- 2) Connector shall not be susceptible to damage by electrostatic discharge (ESD) events from 0 to 15kV as discharged from a 150-pf capacitor through a 330-ohm resistor
- 3) Any damage shall be noted

RESULTS

Mating – Unmating Forces

Mating Unmating Durability Group

- Initial
 - Mating
 - Min ----- 1.27 lbs
 - Max ----- 2.05 lbs
 - Unmating
 - Min ----- 0.72 lbs
 - Max ----- 1.66 lbs
- After Humidity
 - Mating
 - Min ----- 1.14 lbs
 - Max ----- 1.53 lbs
 - Unmating
 - Min ----- 0.85 lbs
 - Max ----- 1.41 lbs

Temperature Cycling

Continuity Initial

- No Interruptions ----- Passed

Continuity Following 500 Cycles

- No Interruptions ----- Passed

DWV @ Altitude

- Minimums
 - Test Voltage ----- 300 VAC
 - Altitude Tested ----- 70000 ft

Pin to Pin

- DWV ----- Passed

Row to Row

- DWV ----- Passed

Electrostatic Discharge

5kV

- No Damage ----- Passed

10kV

- No Damage ----- Passed

15kV

- No Damage ----- Passed

RESULTS Continued

LLCR Mating Unmating Durability Group (72 LLCR test points)

- Initial ----- 4.93 mOhms Max
- Durability, 250 Cycles
 - <= +5.0 mOhms ----- 72 Points ----- Stable
 - +5.1 to +10 mOhms ----- 0 Points ----- Minor
 - +10 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +1000 mOhms ----- 0 Points ----- Unstable
 - >+1000 mOhms ----- 0 Points ----- Open Failure
- Thermal Shock
 - <= +5.0 mOhms ----- 72 Points ----- Stable
 - +5.1 to +10 mOhms ----- 0 Points ----- Minor
 - +10 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +1000 mOhms ----- 0 Points ----- Unstable
 - >+1000 mOhms ----- 0 Points ----- Open Failure
- Humidity
 - <= +5.0 mOhms ----- 72 Points ----- Stable
 - +5.1 to +10 mOhms ----- 0 Points ----- Minor
 - +10 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +1000 mOhms ----- 0 Points ----- Unstable
 - >+1000 mOhms ----- 0 Points ----- Open Failure

RESULTS Continued

LLCR Vibration and Mechanical Shock Group (72 LLCR test points)

- Initial ----- 4.64 mOhms Max
- Shock and Vibe
 - <= +5.0 mOhms ----- 72 Points ----- Stable
 - +5.1 to +10 mOhms ----- 0 Points ----- Minor
 - +10 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +1000 mOhms ----- 0 Points ----- Unstable
 - >+1000 mOhms ----- 0 Points ----- Open Failure

Mechanical Shock & Random Vibration:

- Shock
 - No Damage----- Pass
 - 50 Nanoseconds----- Pass
- Vibration
 - No Damage----- Pass
 - 50 Nanoseconds----- Pass

LLCR Non-Operating Class Temperature Group (72 LLCR test points)

- Initial ----- 4.9 mOhms Max
- Temperature Cycle1 (-55°C to +105°C)
 - <= +5.0 mOhms ----- 72 Points ----- Stable
 - +5.1 to +10 mOhms ----- 0 Points ----- Minor
 - +10 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +1000 mOhms ----- 0 Points ----- Unstable
 - >+1000 mOhms ----- 0 Points ----- Open Failure
- Temperature Cycle2 (-65°C to +125°C)
 - <= +5.0 mOhms ----- 72 Points ----- Stable
 - +5.1 to +10 mOhms ----- 0 Points ----- Minor
 - +10 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +1000 mOhms ----- 0 Points ----- Unstable
 - >+1000 mOhms ----- 0 Points ----- Open Failure

DATA SUMMARIES

MATING/UNMATING:

Mating Unmating Durability Group

	Initial				After Humidity			
	Mating		Unmating		Mating		Unmating	
	Newton	Force (Lbs)	Newton	Force (Lbs)	Newton	Force (Lbs)	Newton	Force (Lbs)
Minimum	5.65	1.27	3.20	0.72	5.07	1.14	3.78	0.85
Maximum	9.12	2.05	7.38	1.66	6.81	1.53	6.27	1.41
Average	7.61	1.71	4.73	1.06	5.68	1.28	5.27	1.19
St Dev	1.37	0.31	1.30	0.29	0.61	0.14	0.94	0.21
Count	8	8	8	8	8	8	8	8

Temperature Cycling

File name	Results		Series	Fail/Pass
CR-1170103 Engineer Chris Wade Lab Tech Tony Wagoner	25	ASP-232112-06 / ASP-232112-06		Pass
	26	ASP-232112-06 / ASP-232112-06		Pass
	27	ASP-232112-06 / ASP-232112-06		Pass
	28	ASP-232112-06 / ASP-232112-06		Pass
	29	ASP-232112-06 / ASP-232112-06		Pass
	30	ASP-232112-06 / ASP-232112-06		Pass
	31	ASP-232112-06 / ASP-232112-06		Pass
	32	ASP-232112-06 / ASP-232112-06		Pass

DWV @ Altitude

Altitude Tested = 70,000 feet	
Test Voltage= 300	
Pin to Pin	Row to Row
Mated	Mated
Passed	Passed
Passed	Passed
Passed	Passed

Electrostatic Discharge

Electrostatic Discharge (ESD) Summary	
Assemblies tested	8
Test Conditions	Exposure to 5kV, 10kV, and 15kV (Repeated 10 Times)
5kV	No Damage
10kV	No Damage
15kV	No Damage
Pass/Fail	Pass

DATA SUMMARIES Continued

LLCR Mating Unmating Durability Group:

- 1) A total of 72 points were measured.
- 2) EIA-364-23, *Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets*.
- 3) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4) The following guidelines are used to categorize the changes in LLCR as a result from stressing.
 - a. $\leq +5.0$ mOhms: ----- Stable
 - b. $+5.1$ to $+7.5$ mOhms: ----- Minor
 - c. $+7.6$ to $+10.0$ mOhms: ----- Acceptable
 - d. $+10.1$ to $+50.0$ mOhms: ----- Marginal
 - e. $+50.1$ to $+1000$ mOhms ----- Unstable
 - f. $>+1000$ mOhms: ----- Open Failure

LLCR Measurement Summaries by Pin Type				
Date	2/25/2025	3/4/2025	3/10/2025	3/24/2025
Room Temp (Deg C)	22	22	22	22
Rel Humidity (%)	37	36	35	37
Technician	Tony Wagoner	Tony Wagoner	Tony Wagoner	Samuel Cecil
mOhm values	Actual Initial	Delta Cycles	Delta Therm Shck	Delta Humidity
Pin Type: Signal 1				
Average	4.42	0.21	0.32	0.25
St. Dev.	0.22	0.16	0.21	0.16
Min	3.87	0	0.02	0.01
Max	4.93	0.73	1.03	0.62
Summary Count	72	72	72	72
Total Count	72	72	72	72

LLCR Delta Count by Category						
	Stable	Minor	Acceptable	Marginal	Unstable	Open
mOhms	≤ 5	$>5 \text{ & } \leq 10$	$>10 \text{ & } \leq 15$	$>15 \text{ & } \leq 50$	$>50 \text{ & } \leq 1000$	>1000
Cycles	72	0	0	0	0	0
Therm Shck	72	0	0	0	0	0
Humidity	72	0	0	0	0	0

DATA SUMMARIES Continued

LLCR Vibration and Mechanical Shock Group:

- 1) A total of 192 points were measured.
- 2) EIA-364-23, *Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets*.
- 3) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4) The following guidelines are used to categorize the changes in LLCR as a result from stressing.
 - a. $\leq +5.0$ mOhms: ----- Stable
 - b. $+5.1$ to $+7.5$ mOhms: ----- Minor
 - c. $+7.6$ to $+10.0$ mOhms: ----- Acceptable
 - d. $+10.1$ to $+50.0$ mOhms: ----- Marginal
 - e. $+50.1$ to $+1000$ mOhms ----- Unstable
 - f. $>+1000$ mOhms: ----- Open Failure

LLCR Measurement Summaries by Pin Type						
Date	7/1/2025		7/3/2025			
Room Temp (Deg C)		22		22		
Rel Humidity (%)		54		52		
Technician		Daniel Haydon		Daniel Haydon		
mOhm values		Actual		Delta		
		Initial		Shock-Vib		
Pin Type: Signal 1						
Average	4		0.26			
St. Dev.	0.26		0.16			
Min	3.6		0.02			
Max	4.64		0.92			
Summary Count	72		72			
Total Count	72		72			

LLCR Delta Count by Category						
	Stable	Minor	Acceptable	Marginal	Unstable	Open
mOhms	≤ 5	$>5 \text{ & } \leq 10$	$>10 \text{ & } \leq 15$	$>15 \text{ & } \leq 50$	$>50 \text{ & } \leq 1000$	>1000
Shock-Vib	72	0	0	0	0	0

Nanosecond Event Detection:

Shock and Vibration Event Detection Summary	
Contacts tested	60
Test Condition	F, 40g's, 11ms, Half-Sine
Shock Events	0
Test Condition	V3, 12 rms g
Vibration Events	0
Total Events	0

DATA SUMMARIES Continued

LLCR Non-Operating Class Temperature Group:

- 1) A total of 72 points were measured.
- 2) EIA-364-23, *Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets*.
- 3) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4) The following guidelines are used to categorize the changes in LLCR as a result from stressing.
 - a. $\leq +5.0$ mOhms: ----- Stable
 - b. $+5.1$ to $+7.5$ mOhms: ----- Minor
 - c. $+7.6$ to $+10.0$ mOhms: ----- Acceptable
 - d. $+10.1$ to $+50.0$ mOhms: ----- Marginal
 - e. $+50.1$ to $+1000$ mOhms ----- Unstable
 - f. $>+1000$ mOhms: ----- Open Failure

LLCR Measurement Summaries by Pin Type		
Date	2/25/2025	3/3/2025
Room Temp (Deg C)	22	22
Rel Humidity (%)	37	36
Technician	Tony Wagoner	Tony Wagoner
mOhm values	Actual Initial	Delta Temp Cycle (-55°C to 105°C)
		Delta Temp Cycle (-65°C to 125°C)
Pin Type: Signal 1		
Average	4.39	0.43
St. Dev.	0.2	0.17
Min	3.98	0.01
Max	4.9	0.96
Summary Count	72	72
Total Count	72	72

LLCR Delta Count by Category						
	Stable	Minor	Acceptable	Marginal	Unstable	Open
mOhms	≤ 5	$>5 \text{ & } \leq 10$	$>10 \text{ & } \leq 15$	$>15 \text{ & } \leq 50$	$>50 \text{ & } \leq 1000$	>1000
Temp Cycle (-55°C to 105°C)	72	0	0	0	0	0
Temp Cycle (-65°C to 125°C)	72	0	0	0	0	0

EQUIPMENT AND CALIBRATION SCHEDULES

Equipment #: TCT-04

Description: Dillon Quantrol TC21 25-1000 mm/min series test stand

Manufacturer: Dillon Quantrol

Model: TC2 I series test stand

Serial #: 04-1041-04

Accuracy: Speed Accuracy: +/- 5% of indicated speed; Speed Accuracy: +/- 5% of indicated speed;

... Last Cal: 05/29/2025, Next Cal: 05/29/2026

Equipment #: MO-11

Description: Switch/Multimeter

Manufacturer: Keithley

Model: 3706

Serial #: 120169

Accuracy: See Manual

... Last Cal: 09/11/2025, Next Cal: 09/11/2026

Equipment #: THC-05

Description: Temperature/Humidity Chamber (Chamber Room)

Manufacturer: Thermotron

Model: SM-8-3800

Serial #: 05 23 00 02

Accuracy: See Manual

... Last Cal: 11/14/2024, Next Cal: 05/31/2025

Equipment #: TSC-01

Description: Vertical Thermal Shock Chamber

Manufacturer: Cincinnati Sub Zero

Model: VTS-3-6-6-SC/AC

Serial #: 10-VT14993

Accuracy: See Manual

... Last Cal: 06/30/2025, Next Cal: 06/30/2026

Equipment #: HPT-01

Description: Hipot Safety Tester

Manufacturer: Vitrek

Model: V73

Serial #: 019808

Accuracy:

... Last Cal: 05/15/2025, Next Cal: 05/15/2026

Equipment #: OV-05

Description: Forced Air Oven, 5 Cu. Ft., 120 V (Chamber Room)

Manufacturer: Sheldon Mfg.

Model: CE5F

Serial #: 02008008

Accuracy: +/- 5 deg. C

... Last Cal: 02/05/2025, Next Cal: 02/05/2026

EQUIPMENT AND CALIBRATION SCHEDULES

Equipment #: SVC-01

Description: Shock & Vibration Table

Manufacturer: Data Physics

Model: LE-DSA-10-20K

Serial #: 10037

Accuracy: See Manual

... Last Cal: 04/22/2025, Next Cal: 04/22/2026

Equipment #: ACLM-01

Description: Accelerometer

Manufacturer: PCB Piezotronics

Model: 352C03

Serial #: 115819

Accuracy: See Manual

... Last Cal: 07/18/2025, Next Cal: 07/18/2026

Equipment #: ED-03

Description: Event Detector

Manufacturer: Analysis Tech

Model: 32EHD

Serial #: 1100604

Accuracy: See Manual

... Last Cal: 10/31/2024, Next Cal: 10/31/2025